Is equilibrium point control feasible for fast goal-directed single-joint movements?
نویسندگان
چکیده
Several types of equilibrium point (EP) controllers have been proposed for the control of posture and movement. EP controllers are appealing from a computational perspective because they do not require solving the "inverse dynamic problem" (i.e., computation of the torques required to move a system along a desired trajectory). It has been argued that EP controllers are not capable of controlling fast single-joint movements. To refute this statement, several extensions have been proposed, although these have been tested using models in which only the tendon compliance, force-length-velocity relation, and mechanical interaction between tendon and contractile element were not adequately represented. In the present study, fast elbow-joint movements were measured and an attempt was made to reproduce these using a realistic musculoskeletal model of the human arm. Three types of EP controllers were evaluated: an open-loop alpha-controller, a closed-loop lambda-controller, and a hybrid open- and closed-loop controller. For each controller we considered a continuous version and a version in which the control signals were sent out intermittently. Only the intermittent hybrid EP controller was capable of generating movements that were as fast as those of the subjects. As a result of the nonlinear muscle properties, the hybrid EP controller requires a more detailed representation of static muscle properties than generally assumed in the context of EP control. In sum, this study shows that fast single-joint movements can be realized without explicitly solving the inverse dynamics problem, but in a less straightforward manner than implied by proponents of conventional EP controllers.
منابع مشابه
Relative damping improves linear mass-spring models of goal-directed movements.
A limitation of a simple linear mass-spring model in describing goal directed movements is that it generates rather slow movements when the parameters are kept within a realistic range. Does this imply that the control of fast movements cannot be approximated by a linear system? In servo-control theory, it has been proposed that an optimal controller should control movement velocity in addition...
متن کاملControl of Fast Goal-Directed Arm Movements a critical evaluation of the equilibrium point hypothesis
There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable. There is another theory which states that this has already happened.
متن کاملAre complex control signals required for human arm movement?
It has been proposed that the control signals underlying voluntary human arm movement have a "complex" nonmonotonic time-varying form, and a number of empirical findings have been offered in support of this idea. In this paper, we address three such findings using a model of two-joint arm motion based on the lambda version of the equilibrium-point hypothesis. The model includes six one- and two...
متن کاملEndpoint control in fast point-to-point elbow rotations Contribution of the dynamical properties of the peripheral motor system to the control of movement
In our daily live we make countless fast goal-directed movements under a large variety in external conditions. When we want to grab a pack of milk to take a sip our starting position, the placement of the pack, and the weight of the pack vary each time we grab. Hence, the required joint torques vary as well. It has been proposed that the brain only plans and controls movement endpoints, leaving...
متن کاملDynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint
Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 95 5 شماره
صفحات -
تاریخ انتشار 2006